Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level

نویسندگان

  • Cristina Riggio
  • Gianni Ciofani
  • Vittoria Raffa
  • Alfred Cuschieri
  • Silvestro Micera
چکیده

In this article, a carbon nanotube (CNT) array-based system combined with a polymer thin film is proposed as an effective drug release device directly at cellular level. The polymeric film embedded in the CNT array is described and characterized in terms of release kinetics, while in vitro assays on PC12 cell line have been performed in order to assess the efficiency and functionality of the entrapped agent (neural growth factor, NGF). PC12 cell differentiation, following incubation on the CNT array embedding the alginate delivery film, demonstrated the effectiveness of the proposed solution. The achieved results indicate that polymeric technology could be efficiently embedded in CNT array acting as drug delivery system at cellular level. The implication of this study opens several perspectives in particular in the field of neurointerfaces, combining several functions into a single platform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates

Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...

متن کامل

Comparison of Buspirone adsorption by modification of carboxylated multi-walled carbon nanotube

To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targete...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

Theoretical Study of Drug Delivery Ability of Carbon INanotube

Nowadays apphcanon of nanotubes in biology and medicinal science is more investigated. Nanotubes can passthroueh cell walls and transport and release drugs in special tissues. The purpose of this paper is to investigatethe interaction of a nanotube having hydroxyl functional groups (OH) with an anticancer agent. In this worktransporting of an anticancer drug named 2-(2-amino 6,7-dimethyl Pterid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009